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live specimens efficiently is made even more difficult when the goal is to capture subcellular details. 

Established imaging technologies, such as widefield and confocal microscopy, have significant 

limitations for in vivo imaging of biological structure and function. Since they each illuminate the 

entire thickness of the specimen, even though high resolution information is obtained from only a 

single focal plane. This results in premature photobleaching and phototoxicity, limiting the duration 

of the imaging and altering the physiological state of the specimen. Thus, there is a great demand 

for technology which can uncover the complex biological phenomena that require 5D (x, y, z, t, λ) 

information in either a single- or multicellular context.   

 

Novel Approach for bioimging in light microscopy 

Widefield and confocal microscopes have been the main working platforms for biologists over 

the course of several decades. Widefield, or epi-fluorescence microscope provides fast imaging 

speed because of widefield detection, but it suffers from the “out-of-focus” light resulting in the 

reduced contrast and poor axial resolution. By use of physically small pinhole, confocal fluorescent 

microscope can reject out-of-focus background to have optical section capability. In this point-

scanning based optical system, a beam of laser light is focused into the specimen to excite the 

fluorescent markers of interest. The generated fluorescent signal at the focus of the objective is 

collected sequentially by scanning the laser excitation focus across the sample to reconstruct the 

entire 3D image. Obviously, it is time consuming for large sample or too slow speed to catch fast 

dynamics process occurring in the live observing subject. The major disadvantage of these two 

techniques is very inefficient use of laser excitation light and fluorescent probes, as well as 

potentially high photodamage to the sample. Later on, the discovery of two-photon excitation 

microscopy uses a special and pricing laser light source, ultrafast laser, to generate the fluorescent 

signal exclusively at the focal volume by nonlinearity. In addition to the background free, the near-

IR wavelength is used to excite the fluorescent molecules so that the deeper penetration depth is 

allowed. However, in the conventional implementation as a point-scanning technique, it suffers 

from the same limitation in speed and signal-to-noise ratio as confocal fluorescent microscopes. For 

live imaging scanning, it is true that line scanning improves upon point scanning and plane 

scanning, in turn, improves upon line scanning with respect to the detection objective. To address 

this issue, a new fluorescent imaging technique should be invented for this purpose. A notable 

example is light sheet based microscopy. Unlike conventional fluorescent imaging based on the epi-

illumination configuration, light sheet based microscopy uses a separate excitation lens 

perpendicular to the widefield detection lens to confine the illumination to the neighborhood of the 

focal plane. By combining intrinsic optical sectioning with widefield detection, light sheet 

microscopy allows fast imaging speed to record multimegapixel imaging of selected plane in a 

single exposure of the camera. Instead of point-scanning in confocal or two photon microscopes, an 

entire excitation plane formed by the laser illuminates the sample from the side. Thus, the photons 

emitted from fluorescent probes at this selected excitation plane is collected with an objective lens, 
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orthogonal to the excitation light sheet. Although this idea is derived from very ancient thought, 

along with the rapid development of instruments such as computer, camera or objectives, the 

stunning performance has been demonstrated only recently. By selective plane illumination, light 

sheet microscopy substantially improves acquisition speed and signal-to-noise ratio, while minimal 

photobleaching and phototoxicity. Especial for 3D live imaging, some light sheet microscopy has 

been operated to collect high-resolution images rapidly and minimizes damage to cells, meaning it 

can image the three-dimensional activity of molecules, cells, and embryos in fine detail over longer 

periods than was previously possible; imaging three-dimensional (3D) dynamics for hundreds of 

volumes, often at sub-second intervals, at the diffraction limit and beyond.  

 

Light sheet based microscopy 

In light sheet microscopy, the light sheet could be a real one, existing simultaneously across the 

illumination plane (such as generated by cylindrical lens), or a virtual one, created by a serial 

scanning long Gaussian beam formed by an imaging objective with a low numerical aperture (NA) 

excitation across the pupil plane. A real light sheet typically requires much lower power so that it 

takes less photo damage at the cost of spatial resolution in all dimensions, whereas a virtual light 

sheet gives more control over the spatial and temporal resolution. The 100-year-old idea of light 

sheet illumination, once termed “ultramicroscopy”. In ultramicroscopy, optical sections are 

generated by stepping the specimen through the illumination plane created by cylindrical lens. This 

method has been proved to image the cellular resolution in optical-cleaning tissue such as fixed 

mouse brains, allowing the resolution in around micrometer range for small objects (less than 2 

mm). A modified version of ultramicroscopy was presented as selective plane illumination 

microscopy (SPIM), instead of cylindrical lens, the imaging objective is used to generate a light 

sheet with scanned Gaussian beam having thinner thickness around 2~10 um (in ultramicroscopy 

the sheet thickness is ~ tenth of micrometer) to improve axial resolution and toward live imaging 

applications. SPIM has been demonstrated in a lot of applications, especially for understanding 

morphogenesis with live samples such as fruit fly, zebrafish or mouse with the acquisition rates on 

the order of 175 million voxels per second. This performance mainly benefits from the advances in 

high-speed camera technology, such as the recent progress in scientific complementary metal oxide 

semiconductor (sCMOS) technology.  This technique has been proven to be a good tool for 

imaging embryos noninvasively in 3D over time at single-cell resolution; however, this commercial 

Gaussian light sheet microscopy uses too thick light sheet over cellular dimensions to benefit sub-

cellular imaging, which results in the drawbacks of substantial out-of-focus excitation and poor 

axial resolution. For example, when imaging a 50-μm-diameter cultured cell, an optimized 

Gaussian light sheet diverges to a full-width at half-maximum (FWHM) thickness of ~ 3 μm. 

Because this is threefold greater than the depth of focus of a high-numerical-aperture (NA) 

detection objective, substantial out-of-focus excitation remains, and hence the benefits of 

background reduction and photobleaching mitigation that are the hallmarks of plane illumination 
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