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In our daily life, we often face the difficult task of having to make decisions before knowing the 

resulting outcomes, and later paying the price for our decisions. What we do not like is to have 

regret, wishing that we had made different but better decisions. This would probably be a hopeless 

task if we only made such a decision once. However, sometimes we have to make such decisions 

repeatedly, in different but similar situations. In such cases, we may be able to learn from the past 

and make better decisions as time goes by. It is not hard to imagine many such scenarios. For 

example, we may want to predict the weather, to trade a stock, or to choose a route from home to 

work, not just once, but repeatedly. There are also many such examples in computer science 

applications, including network routing, scheduling, resource allocation, and online advertising.  

From these scenarios, one can abstract the following problem, known as the online decision 

problem. Suppose there are T rounds to play and there is a space of actions to choose from. In each 

round, we have to choose an action first, and after that receive a corresponding loss (or reward), 

according to some loss (or reward) function of that round. From this feedback, we can then update 

the way we choose the action in the next round. We would like to have an online algorithm which 

can help us choose a good action in each round. The question is: what is the objective we want to 

achieve?  

A natural objective is to minimize the total loss. However, a standard way of evaluating an 

online algorithm is by comparing its total loss with that of an offline algorithm, which is allowed to 

see all the loss functions before making decisions, but is required to play the same action in every 

round. The difference between these two losses is called regret. A major result in this area is that a 

small regret, about the square root of T, can in fact be achieved, which means that the average regret 

per round approaches zero as T grows to infinity. Algorithms achieving such a regret bound are 

called no-regret algorithms, and they turn out to have impacts far beyond the area of machine 

learning, with surprising applications even in settings which do not seem to involve online decisions. 

In fact, several fundament results in different research areas can be easily derived from the 

existence of no-regret algorithms, including the minimax theorem of von Neumann in game theory, 

the linear programming duality theorem in optimization, the powerful boosting algorithms in 

machine learning, and the hard-core lemma for derandomization in complexity theory. Moreover, 
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they have been used to design efficient approximation algorithms for hard computational problems, 

and they have also been used to model evolutionary dynamics in biology.  

Motivated by their immense importance, we investigated the possibility of further improving 

and generalizing no-regret algorithms. We noted that previous works mostly focused on adversarial 

cases with arbitrary loss functions, but we believe that the world around us may not always be 

adversarial and loss functions may sometimes have patterns, which could be exploited for achieving 

a smaller regret. We observed that the world typically evolves in a somewhat smooth way. For 

example, the weather condition or stock price at one moment may have some correlation with the 

next and their difference is usually small, while abrupt changes only occur sporadically. To model 

this, we introduced a new measure on how much the loss functions deviate by summing the 

distances between consecutive loss functions. By taking this into account, we designed a new online 

algorithm which can achieve a regret bound about the square root of the deviation measure. This 

means that when the loss functions have a small deviation, our algorithm can actually achieve a 

much smaller regret than previously achievable ones. On the other hand, even when going back to 

the adversarial case in which loss functions have no pattern and their deviation is as large as T (the 

number of rounds), our algorithm still recovers the same square root of T regret as previous 

algorithms. Therefore, previous results can be seen as special cases of ours.  

We also extended our work to the more general online convex optimization problem, in which 

the space of actions can be infinite, but the loss functions are convex. We designed algorithms for 

cases in which the loss functions are (i) linear, (ii) convex, or (iii) strongly convex; again, these 

algorithms achieve small regrets when the loss functions have small deviations. Interestingly, all our 

algorithms can be unified by a single meta-algorithm: by instantiating a parameter of the meta-

algorithm appropriately, we obtain all of our different algorithms. This also allows us to analyze the 

regrets of our algorithms for the different types of loss functions in the same framework.  

In addition to designing better online algorithms, we also investigated how they might be 

applied to other areas. One application we discovered is in the area of game theory. As you may 

know, game theory studies strategic situations when there are conflicts of interest among a system 

of selfish players. We are interested in the setting of repeated games, in which the games are played 

not just once, but repeatedly, so that players will be able to adjust their plays adaptively. Nash 

equilibrium is a widely-adopted solution concept to predict the outcome of such a system, as it 

corresponds to a steady state in which the system will remain once it is reached. However, this 

raises the issue of how such a state can even be reached. In fact, it is now widely believed that there 
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is no efficient algorithm for computing a Nash equilibrium for a general game. This means that 

equilibria may not be reached in a reasonable amount of time in general, and the outcomes we have 

observed may be far out of any equilibrium, which would render the study on equilibria 

meaningless. To address this issue, a new line of research is to consider natural algorithms in which 

players have incentives to play, and to study how the system evolves according to such dynamics. 

One could argue that a plausible incentive for a player is to maximize his average utility (reward) 

over time, and hence he has an incentive to play a no-regret algorithm. We showed that for a broad 

class of games called congestion games, if players play a certain type of no-regret algorithms called 

mirror-descent algorithms, then they indeed converge to Nash equilibria quickly. Our result is 

sufficiently general, as the congestion games include several important games, such as the routing 

game, and the mirror-descent algorithms include well-known algorithms, such as the multiplicative 

updates algorithm and the gradient-descent algorithm. Moreover, we showed that the equilibria they 

converge to are good in the sense that the corresponding social welfares are, in fact, close to the 

optimal, the best social welfare achievable in any possible (not necessarily equilibrium) state. 

To illustrate our result in a more concrete manner, let us take the routing game as an example. 

In this game, there is an underlying network consisting of a set of nodes connected by some set of 

edges. Each edge is associated with some latency function, which increases with the amount of flow 

passing through. There is a set of players, each having some amount of flow to be routed from some 

source node to some destination node, hoping to minimize the latency he would experience. 

However, the players have conflict of interests, as each wants to use the edges with smaller latency 

functions, but would not like others to do the same, as that would increase his latency. Note that the 

best route of a player actually depends on how other players choose their routes. Therefore, after 

seeing the choices of other players, some player may wish to change his choice, but if that player 

does so, other players may in turn find their previous routes sub-optimal and wish to change too. It 

is not clear if such a cascade of changes will go on forever or if the system will eventually converge. 

Our result shows that if each player plays the mirror-descent algorithm, the system will indeed 

quickly converge to a Nash equilibrium, in which no player has an incentive to change.  

 

 


