重力波與黑洞

若說起近年科普界最火紅的關鍵字,絕對少不了「重力波」。重力波爆紅的原因,無非是位於美國的雷射干涉儀重力波觀測站( LIGO )在 2015 年首度觀察到來自一場黑洞合併事件引起的重力波,並於 2017 年獲得諾貝爾物理獎的肯定。重力波到底是什麼?和黑洞又有什麼關係?2019 年中研院院區開放日,中研院物理所吳建宏研究員的精彩演講「利用重力波探測宇宙黑洞」,要跟大家聊聊重力波大小事。

 重力像水波?

宇宙萬物之間都有重力,比如說,地球是因為具有重力,才能把我們「吸」在地表上;太陽是因為具有重力,才能讓八大行星不斷繞著它公轉。

不過,愛因斯坦的廣義相對論中,認為重力是來自空間的扭曲,質量愈大的物體,周圍的空間就扭曲的愈厲害。而當物體加速度前進時,則會使空間的扭曲發生變化、產生「漣漪」,這就是「重力波」。吳建宏形容:「就像水中的漣漪那樣,水波是依賴著水而存在,重力波則是依賴著空間而存在。」

既然宇宙中有那麼多天體,而且質量大的也不少,可以想像我們所處的「空間」到處都是重力波,一點也不平滑,反而可能像處處水波蕩漾的大池塘,真是顛覆直覺!

重力波示意圖。當物體加速度前進時 (如兩個超大質量星體互繞),會使空間的扭曲發生變化、產生「漣漪」,這就是「重力波」。圖片來源│R. Hurt/Caltech-JPL

重力波示意圖。當物體加速度前進時 (如兩個超大質量星體互繞),會使空間的扭曲發生變化、產生「漣漪」,這就是「重力波」。 圖片來源│R. Hurt/Caltech-JPL

 

既然重力波到處都是,為什麼在愛因斯坦 1916 年提出重力波之後,我們相隔了約一百年,才終於透過  LIGO 找到了它存在的證據呢?

因為重力波能引起的「波動」非常的小,科學家估計即使是劇烈的天體合併事件,能引起的重力波所造成的空間擾動,傳遞到地球時,數量級也頂多只有 10-12 比 1,換算下來,一個一公里長的物體,因為重力波而造成的改變量只有千分之一個原子核直徑那麼長而已,也難怪愛因斯坦在提出重力波之後,曾說過「我們可能永遠測量不到重力波的存在。」不過,幸好如此,我們才不會感覺自己一下子變矮、一下子又變胖,對吧?

儘管連愛因斯坦都沒把握測得到,但不要小看科學家的鬥志。既然波動很小,我們就設計超級精密的儀器來測量它!在科學家大無畏的精神下製造出的 LIGO ,精確度數量級硬是高達了 10-22 !

在愛因斯坦提出重力波的一百年後,我們終於找到了重力波存在的證據。

 LIGO 的完美 L

科學家是怎麼做到的呢?答案就在 LIGO 超特別的設計裡。LIGO 包含了一組相互垂直、呈 L 形的兩根管子,每根管子的長度都是四公里。一開始,從交角處出發的雷射光,會被分光鏡分成兩道,各自沿著兩根管子前進,再由管末的反射鏡反射回來。雷射光來回反射四百趟之後,會在交角處會合並互相干涉。

在沒有重力波的情況下,從兩根管子回來的雷射光走的路程長度完全相同,在干涉過程中會彼此抵消,不會產生訊號。但如果重力波引起空間扭曲,就可能對兩根管子的長度產生影響,拉伸或壓縮了一點點,兩道雷射光的光程就會有些微不一樣,回到交角處時的相位也會有一點點差異,這一點點的差異就足以讓 LIGO 精密的干涉儀器產生干涉訊號,讓科學家知道:「嘿!剛剛有重力波經過這裡!」

換言之,儘管重力波能產生的空間擾動超級小,但 LIGO 把雷射光的光程拉得超級長,盡可能把重力波造成的空間擾動放大到可觀測的程度,然後等待足夠大的重力波來臨時,就是我們窺探它的好機會。

 

雷射光被分光鏡分成兩道,分別沿著兩根管子前進,經由管末的反射鏡反射四百趟之後,兩道雷射光會在出發的交角處會合並互相干涉。如果沒有重力波,兩道光程一樣(兩根管長一樣),不會出現干涉條紋。如果有重力波經過,光程不同(管長些許不同),就會出現干涉條紋,藉此偵測出重力波。資料來源│ LIGO will be getting a quantum upgrade圖說設計│黃曉君、林洵安

雷射光被分光鏡分成兩道,分別沿著兩根管子前進,經由管末的反射鏡反射四百趟之後,兩道雷射光會在出發的交角處會合並互相干涉。如果沒有重力波,兩道光程一樣(兩根管長一樣),不會出現干涉條紋。如果有重力波經過,光程不同(管長些許不同),就會出現干涉條紋,藉此偵測出重力波。 資料來源│ LIGO will be getting a quantum upgrade 圖說設計│黃曉君、林洵安

 看見了!黑洞在合併

當然,儘管我們用 LIGO 這樣的儀器做了萬全的準備,要看到「足夠大」的重力波,還得有天時地利的幫助才行。重力波雖然可以穿透萬物,不像光一樣容易被擋住,但若波源太遠,波的強度還是會隨著距離逐漸減弱,所以得有一個距離地球不太遠,又能產生明顯重力波的波源才行。

此外,要產生重力波,需要天體系統在旋轉時的「輪廓」產生變化,也就是這個系統本身的外觀愈不對稱愈好。如果是一個球狀對稱的天體在自轉,或者天體很平均的向內塌縮,是不會產生重力波的。反過來說,一個雙星系統彼此繞行最後合併的過程,由於雙星位置一直變換,整個系統的不對稱性高,因此產生的重力波就會比較明顯,所帶出的能量也會比較大,相對容易觀測。既然如此,最可能產生重力波的事件,就莫過於「黑洞合併」及「中子星合併」了。以下是以電腦模擬兩個黑洞合併事件以及在過程中發出的重力波。

 

 

要看更完整的精采文章,請至研之有物官網:

http://research.sinica.edu.tw/ng-kin-wang-gravity-wave-black-hole/

(趕快點進來喔!還有更多精采圖文!)