中研院江安世院士、應用科學研究中心陳壁彰助研究員,共同開發了「透化層光定位顯微鏡」,一次解構果蠅全腦的多巴胺神經網路,並可「看見」記憶蛋白在特定神經細胞突觸上的新生,此新技術可望揭開大腦記憶機制的神秘面紗。研究論文已於去(2019)年 10 月 18 日刊登在《自然通訊》(Nature Communications)。跟著研之有物一起來了解!

一個細微的動作、一絲情緒起伏,都是由千絲萬縷的神經網路,以及大量訊息傳遞的化學分子交錯作用的結果。早期心理學家要解析人類的大腦意識活動,必須對照研究對象的夢境和生活史。然而,大多數人一起床夢境就忘掉八成,還要將夢境和更久遠的童年記憶連繫起來,說佛洛伊德有多心累都不為過。

人類的任何情緒和行為,都是大腦千絲萬縷的神經網路,以及大量訊息傳遞的化學分子交錯作用的結果。 圖片來源│iStock

人類的任何情緒和行為,都是大腦千絲萬縷的神經網路,以及大量訊息傳遞的化學分子交錯作用的結果。 圖片來源│iStock

如今神經科學家有螢光蛋白與基因工程等工具在手,可先給予模式生物 (如果蠅) 特定刺激,然後用螢光定位腦內參與活動的生化分子 (如某些與記憶有關的蛋白質分子),了解刺激前後分子如何重新分布,以此推測它們在腦部活動中所扮演的角色。BUT!因為可見光無法穿透較厚的組織,過去研究者只能將腦組織切成薄片,才能用顯微鏡觀察。但切片會破壞大腦的整體性,無法忠實呈現完整的神經結構。

中研院院士、國立清華大學腦科學研究中心江安世,以及中研院應用科學研究中心助研究員陳壁彰,合作研發出可透視果蠅全腦的超解析 3D 層光定位顯微鏡,並利用化學方法把果蠅大腦變「透明」、可見光能通過,終於得以窺見果蠅腦部深處被螢光標定的單分子神經,藉此建構果蠅全腦神經網路地圖。去年團隊藉著這項技術,「看見」記憶蛋白在大腦深處特定神經細胞突觸上的新生,初步揭開大腦記憶的神秘面紗。

精彩故事,是這麼開始的……

 

 解析度、廣度,統統都要!

先來說說傳統顯微鏡的問題!傳統光學顯微術能夠解析的最小距離,大約 250 奈米左右。也就是說,如果兩個發光分子之間的距離小於這個極限,因為光波的繞射特性會使分子影像變得模糊。這個鑑別距離極限,定義了光學成像的「解析度」。

傳統光學顯微術的「繞射極限」,硬生生地限制了科學家一窺腦部全貌的夢想。

大腦神經突觸的大小約在 20 到 40 奈米之間,與腦部分子活動相關的神經結構尺度也在數十奈米。可想而知,運用傳統「粗線條」的光學顯微術觀察大腦,一定會有「見林不見樹」的問題:即使可知大致的神經走向,也無法得知細微變化。但魔鬼,就是藏在細節裡啊~~

另一方面,傳統顯微鏡還有視野廣度或視野大小的問題。神經突觸的大小是果蠅大腦 (約數百微米) 的數千分之一。想要解析特定分子在大腦的分布,困難度就像用小小無人機空拍一個籃球場,還要定位籃球場上每隻螞蟻的正確位置。

但在顯微鏡的世界裡,解析度和視野廣度本是兩個極端,想要一種技術、兩種滿足,必須找到非比尋常的解決之道。

 

 關關難過關關過

首先,這種顯微技術必須能夠定位腦神經細胞中個別分子。衡量各種超解析顯微術的優勢與適用範圍,「單分子定位顯微術」(single molecule localization microscopy) 具有數十奈米等級的空間解析度,得以鑑別相距約 20 奈米的分子,恰好符合神經生物學家對解析度的要求,無疑是首選工具。

 

圖片來源│ 呂杰翰圖說美化│林洵安

圖片來源/呂杰翰;圖說美化/林洵安

 

再者,因為神經網路遍佈全腦,並非僅侷限在大腦的表層,此顯微術必須能看得又深又清楚,才能重建果蠅大腦完整的三維影像,提供全面而精密的分子地圖。近年熱議的「層光顯微術」(light-sheet microscopy) 可快速取得大範圍樣品的影像,成為不二首選 (有關層光顯微鏡的介紹,請見研之有物另一好文〈灑下百道層光,一窺微觀世界的生命律動──晶格層光顯微鏡〉)。

再加上,江安世院士團隊透過生物組織澄清技術,運用化學方法讓果蠅腦變透明、能讓可見光通過,然後以層光掃描透明大腦,輔以上述單分子定位顯微術,即可在短時間內偵測大腦內的個別分子位置,稱為「透化層光定位顯微鏡」。

 

欲瀏覽完整精采文章,請至研之有物官網:

https://research.sinica.edu.tw/rapid-single-wavelength-lightsheet-localization-microscopy/

(趕快點進來喔!還有更多精采圖文!)