合成生物學
萊特兄弟和無數人參考鳥類飛行的原理,加以設計改良,創造出今日飛機的速度與功能。人類模仿自然、巧奪天工的能力,現已進展到更小的「分子」尺度。例如,中研院院長廖俊智先前與研究團隊參考自然界的光合作用、改造細菌細胞的基因,設計出電驅動的微生物系統,讓細菌能幫人類解決二氧化碳排放過量的問題、同時產出燃料。

取之自然,改之創造新功能
從古至今,生物學家致力於探究細胞內各種生物分子的作用機制。有些人會問,這有什麼用?中研院院長廖俊智說明,當我們了解得夠透徹,就可以利用自然界不同的生物分子,結合生物學、物理、化學與工程的概念,重新設計其反應作用機制,創造出自然界從未存在的新功能細胞,這就是合成生物學的概念。

一般的生物學,是從拆解中學習。合成生物學,是透過設計來創造。

例如,當今人們面對兩大生活難題:二氧化碳排放過多、化石能源污染性過高。廖俊智思考,其實可以把過多的二氧化碳,回收變成我們需要的燃料!

廖俊智與研究團隊的構想為,先花點功夫改造細菌細胞的基因,重新設計細胞內生物分子的合成反應途徑,就能讓細菌循環利用不同的碳源,並產出高碳醇類(例如異丁醇)作為生質燃料,特別可加工作為航空用油。

廖俊智與研究團隊,計畫讓細菌細胞進行的合成反應途徑:以二氧化碳為碳源 → 產生燃料 → 達成新的碳循環。
資料來源│廖俊智說明 圖說設計│林婷嫻、張語辰

將二氧化碳變燃料

二氧化碳的循環利用,過程必須注入能源,在生物界中,最佳的能源來自太陽。為了讓細菌循環利用二氧化碳,廖俊智與團隊一方面研發新的二氧化碳轉化途徑,一方面改良古老又睿智的方法──生物經過演化所發展的「光合作用」。

光合作用分成兩部分,第一部分是光反應,將光能變成化學能;第二部分是利用這個化學能來固定二氧化碳。

所謂「固碳」,是指將二氧化碳轉化成高碳數的化合物,使其不再逸散至空氣中,而能被生物體所用。

光合作用是自然界的能量轉換機制。廖俊智思考一個問題:大自然使用「光」,但我們能不能重新設計細胞的反應作用途徑,改成用「電」來驅動生物的固碳反應?

為了找出答案,在布滿 R. eutropha 細菌細胞的水溶液中,研究團隊放入電極,作為電能來源。但沒想到,一開始細菌細胞都被「電死」了!因為電極在溶液中產生很多自由基,這些自由基會將細菌殺死。

為了解決這個問題,研究團隊先分析電極在溶液中產生的自由基種類,進而確定這些自由基的半衰期。幸好這些自由基的半衰期非常短,因此,研究團隊加上一個陶瓷分隔層,在電擊和細菌之間隔出一點距離,讓這些自由基在觸及細菌細胞前就先衰變,保護細菌不被摧毀。

廖俊智與團隊改造的微生物系統:透過細菌細胞的合成反應,先將電能轉換為化學能,再用化學能合成產出燃料。
資料來源│Integrated electromicrobial conversion of CO2 to higher alcohols. 圖說重製│林婷嫻、張語辰

除了設計電驅動的方法,團隊也改造了 R. eutropha 細菌細胞的基因,重新設計它的代謝途徑。通常我們對「代謝」的理解,是指細胞內消化食物的反應;但在此泛指「細胞內小分子的化學反應」。

R. eutropha 細菌細胞其實沒有葉綠體吸收光能,進行傳統的光合作用。而是,當電極將溶液中的二氧化碳還原成甲酸 (HCOO) 後,它會利用甲酸來合成化學能 (NADPH),接著搭配溶液中的二氧化碳,進行卡爾文循環 (Calvin cycle),也就是光合作用中的「固碳反應」。當 R. eutropha 細菌細胞內小分子的化學反應被重新設計後,就能使得最終固碳反應的產物轉化成異丁醇,這種高碳數的醇類可當作汽油的代替物、或加工成航空燃料。

這個改造後的電驅動微生物系統,除了可以固碳、產生燃料,也能用來儲存電能。

廖俊智說明,無論是風力發電或太陽能發電,再生能源最大的問題是沒辦法儲存多餘的電能。儲能通常是利用電池,但電池壽命有限、且效益不高。若將電能有效率地轉換為化學能,就可以儲存非常久;另一方面,也能利用這個化學能,來循環利用二氧化碳、轉化成生質燃料。這種方式可彌補電池之不足。

在研究團隊的實驗中,目前供給細菌細胞的電能,轉化產出生質燃料的效率仍然很低,但廖俊智說明:「我們的研究,是全世界第一個這樣做成功的,目的是驗證這個做法的可行性」。研究團隊也持續嘗試不同方法來提高效率,不一定只能用 R. eutropha 細菌和卡爾文循環;也正設計多種人工碳循環的反應途徑,並利用合成生物學的方式,植入不同微生物細胞中試驗。

有些人會擔心:改造細菌的基因,會不會對環境造成傷害?對此擔憂,廖俊智深思後回應:「這種細菌經過人工改造後,變成替人們生產的工具;但細菌本身長得不比原生種快,處於可控制的範圍」,並強調,科學家在研究過程中,要避免科學走上傷害環境的這一步;不能掉以輕心,但也不需過份恐慌。

幫「脂肪代謝」蓋高速公路

取之自然,改之創造新功能,這種「合成生物學」的知識技術,除了應用於微生物細胞,也可用來改造動物細胞的代謝途徑,藉此治療代謝異常。

例如,肥胖症 (Obesity) 病人求診時,一般會透過調控體內荷爾蒙、或其他代謝控制藥物來治療;但廖俊智比喻,調控荷爾蒙或控制代謝,就像在塞車的區域拼命豎立交通號誌來控制車流量,卻沒有真正解決塞車問題。

為什麼會肥胖?肥胖的原因很多,基本上是因為脂肪累積過多、代謝不良。應該要加蓋「高速公路」把塞車的脂肪代謝掉。

脂肪在體內代謝後,會轉變成二氧化碳和水,並於過程中產生能量、供體內細胞使用。這個代謝過程就像一個龐大複雜的交通路網,當裡面某些途徑塞車時,脂肪堵塞積累過多,就導致了肥胖問題。

廖俊智與研究團隊加蓋的「高速公路」,由「酶」堆砌而成,用來幫助代謝脂肪。
資料來源│廖俊智說明 圖說設計│林婷嫻、張語辰

 

廖俊智與團隊以小鼠肝細胞做實驗,改造肝細胞的基因,並新增一條代謝脂肪的路徑,就像加蓋五股楊梅高架道路,來消化國道一號的壅塞車流量。經過小鼠實驗證實,這個方法可以讓更多的脂肪酸氧化,即使讓小鼠攝取高脂飲食,小鼠不再那麼容易變胖。

看到這裡,想減肥的朋友可能會問,這能否運作於人體?廖俊智說,這個實驗讓我們看到在高等生物體內,使用人工途徑(如基因療法) 來提高代謝反應的可能性;但是人們應利用這項結果構想其他方法,以較緩和的方式達到相同的效果。否則,應該不會有人為了吃美食不想變胖,而改造自己肝細胞的基因。

有完美的解決方案嗎?
無論是生產燃料的電驅動微生物系統,或是加速脂肪代謝的肝細胞工程,都尚有許多待改進之處。從目前的實驗原型示範,到未來大規模的市場應用,還有許多研究方法值得嘗試。廖俊智樂觀地說:「不可能一次解決所有問題,但不用擔心,總是能想到解決方案!」這就是科學的樂趣。

All solutions have a problem, but all problems have a solution.

實驗的過程總是會有失敗,廖俊智坦言,這是科學家最大的挑戰。「從好奇的小朋友,變為成熟的科學家,過程中要面對、處理許多實驗失敗帶來的挫折感。」

遇到挫折的時候,廖俊智沒有什麼特別的方法,就是要面對問題、重新構思、解決問題。其實不只科學家會遇到失敗,像是王建民、陳偉殷、大谷翔平這些運動員所受到的挫折,也絕非外界能夠想像。

廖俊智言語中帶著力量地說:「每個人都要憑藉自己的毅力、和對科學的執著,就像這些選手對於運動的執著。」
攝影│張語辰

  • 執行編輯|林婷嫻
  • 美術編輯|張語辰

 

延伸閱讀